MicroBooNE

Jennet Dickinson Columbia University April 16, 2013

MicroBooNE

- Liquid Argon time projection chamber (LArTPC) with 60 ton fiducial volume
- Will search for v_e appearance in the Booster Beam, beginning in 2014

- Major goals of MicroBooNE include
 - R&D test bench for future liquid Argon detectors
 - Refine measurements of neutrino cross sections
 - Investigate the source of the MiniBooNE low energy excess

LArTPC

Liquid Argon Time Projection Chamber

- - Orientation of wire planes

- Detector volume is filled with 170 tons of LAr
- Charged particle tracks ionize Ar atoms in the detector
- Ionization electrons drift towards three wire planes (vertical, +/- 60° from vertical)
- Signals on wire planes are used to reconstruct 3D particle tracks:

Looking forward: R&D LArTPC experiments in the works

Experiment	LAr Volume(s)	Construction begins	Location
ICARUS	600 ton	running	Gran Sasso, Italy
MicroBooNE	170 ton	under construction	FNAL
LAr1	60 ton, 1 kton	projected ~ 2016	FNAL
LBNE and many m	18 ton, 40 kton	projected ~ 2020	FNAL/ Homestake

- MicroBooNE and other current LAr detectors serve as an R&D test bench for future large LArTPCs
- In particular, MicroBooNE will contribute to the development of
 - Readout electronics and Data Acquisition System
 - Event reconstruction software

Measuring v cross sections

- Precise measurements of cross section on Ar are essential for:
 - Testing existing cross section models
 - Developing better neutrino event generators
 - Future LAr experiments
- Can determine interaction channel by looking at final state particles

 v_e CC events have an electron in the final state:

 ν_{μ} CC events have a muon in the final state:

Event rates, generated in Nuance			
for 6.6 x 10 ²⁰ POT, 60t fid. volume			
production mode	# events		
CC QE $(\nu_{\mu} n \rightarrow \mu^{-} p)$	60,161		
NC elastic $(\nu_{\mu} N \to \nu_{\mu} N)$	19,409		
CC resonant π^+ $(\nu_{\mu} N \to \mu^- N \pi^+)$	25,149		
CC resonant π^0 $(\nu_{\mu} n \to \mu^- p \pi^0)$	6,994		
NC resonant π^0 $(\nu_{\mu} N \rightarrow \nu_{\mu} N \pi^0)$	7,388		
NC resonant π^{\pm} $(\nu_{\mu} N \rightarrow \nu_{\mu} N' \pi^{\pm})$	4,796		
CC DIS $(\nu_{\mu} N \rightarrow \mu^{-} X, W > 2 \text{ GeV})$	1,229		
NC DIS $(\nu_{\mu} N \rightarrow \nu_{\mu} X, W > 2 \text{ GeV})$	456		
NC coherent π^0 $(\nu_{\mu} A \rightarrow \nu_{\mu} A \pi^0)$	1,694		
CC coherent π^+ $(\nu_{\mu} A \rightarrow \mu^- A \pi^+)$	2,626		
NC kaon $(\nu_{\mu} N \rightarrow \nu_{\mu} K X)$	39		
CC kaon $(\nu_{\mu} N \to \mu^{-} K X)$	117		
other ν_{μ}	3,678		
$\begin{array}{c c} \text{CC kaon } (\nu_{\mu} N \to \mu^{-} K X) \\ \text{other } \nu_{\mu} \\ \hline \text{total } \nu_{\mu} \text{ CC} \\ \text{total } \nu_{\mu} \text{ NC+CC} \end{array}$	98,849		
total ν_{μ} NC+CC	133,580		
$\nu_e \text{ QE}$	326		
$ u_e$ CC	657		

MiniBooNE Low Energy Excess

Unexpected results from MicroBooNE's predecessor

- Above 475 MeV: MiniBooNE ν_e event rates agree with background predictions
- 200 475 MeV: MiniBooNE measures an unexpected excess of $v_{\rm e}$ events

- Is this excess really due to v_e events? Or is it due to events with a photon in the final state?
- Powerful electron/photon discrimination of LArTPC will allow MicroBooNE to investigate!

Advantages of the LArTPC for Particle ID

Advantages of the LArTPC for Particle ID

MiniBooNE

Electron, Photon

- Both electrons and photons appear as fuzzy rings in the MiniBooNE Cherenkov detector
- It is very difficult to distinguish electrons from photons

MicroBooNE

Electron, Photon

- Can tell electrons and photons apart
- dE/dx in the first few cm of the shower shows 1 MIP for electrons events, 2 MIP for photons

Advantages of the LArTPC for Particle ID

MiniBooNE

- Events with π^0 in the final state, (e.g. NC π^0 events) appear as two overlapping showers
- If the two rings are not clearly defined and look like a single shower, this can be misidentified as a $\nu_{\rm e}$ event

$$\pi^0 \to \gamma + \gamma$$

MicroBooNE

- Better image of event topology: can see separation between event vertex and start of γ shower(s), separation between 2 γ showers
- This + dE/dx tool allows for better identification of events with π^0 in the final state

$$\pi^0 \to \gamma + \gamma$$

9

MicroBooNE Sensitivities

What MicroBooNE expects to see...

MicroBooNE Sensitivities

What MicroBooNE expects to see...

Non-standard neutrino oscillations! e.g. sterile neutrinos

Sensitivity for two neutrino oscillations under the (3+1) sterile neutrino hypothesis

MicroBooNE: Current Status

- TPC field cage & wire planes constructed
- Electronics testing in progress
- Cryostat delivered to Fermilab (March 2013)

 Will take data for 2-3 years (6.6 x 10²⁰ POT), beginning in 2014